The Length of a Shortest Closed Geodesic

Isabel Beach
University of Toronto

January 6, 2023

Background: Definitions

Definition

A geodesic is a curve that locally looks like a "straight line". Alternatively, a curve that is locally length minimizing.

Examples:

- straight line segments in Euclidean space
- great circle arcs on the sphere
- this periodic curve on the torus

Background: Definitions

Definition

A geodesic that is also a closed curve is called a geodesic loop.

Definition

A geodesic loop that is smooth at its endpoints is called a closed (or periodic) geodesic.

Result

B. \& R. Rotman (2020) [3]

Suppose M is a complete, orientable surface with finite area A and n ends. Let $l(M)$ be the length of a shortest closed geodesic on M.
(1) If $n \leq 1$, then $I(M) \leq 4 \sqrt{2 A}$.
(2) If $n \geq 2$, then $I(M) \leq 2 \sqrt{2 A}$.

Background: Existence

Question
 Does a closed geodesic always exist on a given surface?

Background: Existence

Question
 Does a closed geodesic always exist on a given surface?

G. Birkhoff (1917) [4]

Every compact surface contains at least one closed geodesic.

Background: Existence

Question

Does a closed geodesic always exist on a given surface?

G. Birkhoff (1917) [4]

Every compact surface contains at least one closed geodesic.
G. Thorbergsson (1978) [13], V. Bangert (1980) [2]

Every complete surface of finite area contains at least one closed geodesic.

Background: Length Bounds

Question (M. Gromov)

What is the best bound for the length L of a shortest closed geodesic on a Riemannian manifold M in terms of $\sqrt[n]{\text { Vol? }}$

Background: Length Bounds

Question (M. Gromov)

What is the best bound for the length L of a shortest closed geodesic on a Riemannian manifold M in terms of $\sqrt[n]{\text { Vol }}$?

We consider $n=2$. When M is compact and not a 2-sphere, answers in various cases were given by P. Pu, C. Loewner, M. Gromov, J. Hebda, Y. Burago, V. Zalgaller, and others.

Background: The Sphere

Question
 Can we bound L if M is a sphere (with area A)?

Background: The Sphere

Question
 Can we bound L if M is a sphere (with area A)?

C. B. Croke (1988) [6] $L \leq 31 \sqrt{A}$

Background: The Sphere

Question

Can we bound L if M is a sphere (with area A)?
C. B. Croke (1988) [6] $L \leq 31 \sqrt{A}$
S. Sabourau (2004) [11], R. Rotman, A. Nabutovsky (2002) [9] $L \leq 8 \sqrt{A}$

Background: The Sphere

Question

Can we bound L if M is a sphere (with area A)?
C. B. Croke (1988) [6] $L \leq 31 \sqrt{A}$
S. Sabourau (2004) [11], R. Rotman, A. Nabutovsky (2002) [9]
$L \leq 8 \sqrt{A}$
R. Rotman (2006) [10]
$L \leq 4 \sqrt{2 A}$

Background: The Sphere

Question

What is the sharp bound for L if M is a sphere?

Background: The Sphere

Question

What is the sharp bound for L if M is a sphere?
Conjecture (E. Calabi, Croke, \& Gromov) [5]
The sharp bound is $L \leq 12^{1 / 4} \sqrt{A}$ and is realized by the Calabi-Croke sphere, obtained by gluing two equilateral triangles along their boundary.

Background: The Sphere

F. Balacheff (2010) [1], Sabourau (2010) [12]

This conjecture is true "locally", i.e. for metrics close to the Calabi-Croke sphere metric.

Background: Non-Compact Surfaces

Question

Can we bound L if M is non-compact (with area A)?

Background: Non-Compact Surfaces

Question

Can we bound L if M is non-compact (with area A)?

Croke (1988) [6]

Suppose M is a complete, orientable surface with finite area A and n ends. Let $l(M)$ be the length of a shortest closed geodesic on M.
(1) If $n=1$, then $I(M) \leq 31 \sqrt{A}$.
(2) If $n=2$, then $I(M) \leq(12+3 \sqrt{2}) \sqrt{A}$.
(3) If $n \geq 3$, then $I(M) \leq 2 \sqrt{2 A}$.

Non-Compact Surfaces

Question

Can we bound L if M is non-compact (with area A)?

B. \& Rotman (2020) [3]

Suppose M is a complete, orientable surface with finite area A and n ends. Let $l(M)$ be the length of a shortest closed geodesic on M.
(1) If $n \leq 1$, then $I(M) \leq 4 \sqrt{2 A}$.
(2) If $n \geq 2$, then $I(M) \leq 2 \sqrt{2 A}$.

This is a tighter constant for $n=1$ and $n=2$.

Non-Compact Surfaces

Question

What is the sharp bound for L if M is non-compact (with area A)?

Conjecture (B. \& Rotman (2020)) [3]
The sharp bound is $L \leq 12^{1 / 4} \sqrt{A}$ and is realized by the Calabi-Croke sphere with "cusps" on its vertices.

Non-Compact Surfaces

Question

What is the sharp bound for L if M is non-compact (with area A)?

Conjecture (B. \& Rotman (2020)) [3]

The sharp bound is $L \leq 12^{1 / 4} \sqrt{A}$ and is realized by the Calabi-Croke sphere with "cusps" on its vertices.
A. Jabbour, Sabourau (2020) [7] (arXiv)
(1) This conjecture is true for $n=3$.
(2) For $n=4$, the sharp bound is $L \leq\left(2 / 3^{1 / 4}\right) \sqrt{A}$ and is realized by a tetrahedron with "cusps" on its vertices.

Curve Shortening

The Birkhoff Curve Shortening Process

Given any closed curve γ, we can produce a homotopy γ_{t} such that
(1) $\gamma_{0}=\gamma$
(2) $L\left(\gamma_{t_{2}}\right) \leq L\left(\gamma_{t_{1}}\right)$ for all $t_{1}<t_{2}$,
(3) γ_{t} either escapes to infinity, shrinks to a point, or converges (up to a subsequence) to a closed geodesic.

Curve Shortening

Idea

We can find short geodesics by shortening short closed curves.

Curve Shortening

Idea

We can find short geodesics by shortening short closed curves.

Problem 1

When we shorten a curve, it might collapse to a point (i.e., a trivial closed geodesic).

Curve Shortening

Idea

We can find short geodesics by shortening short closed curves.

Problem 1

When we shorten a curve, it might collapse to a point (i.e., a trivial closed geodesic).

Problem 2
When we shorten a curve, it might escape to infinity.

Curve Shortening

Idea

We can find short geodesics by shortening short closed curves.

Problem 1

When we shorten a curve, it might collapse to a point (i.e., a trivial closed geodesic).

Problem 2

When we shorten a curve, it might escape to infinity.
This is especially problematic if every curve is either nullhomotopic or homotopic to a point at infinity, i.e. if M is a sphere with 0,1 , or 2 punctures.

Convexity

One way to control how curves shorten is to "trap" them in convex regions.

Convexity

One way to control how curves shorten is to "trap" them in convex regions.

Lemma (cf. Croke (1988) [6])

Let Ω be a convex region. Let $\gamma \subset \bar{\Omega}$ be a closed curve and let γ_{t} be any curve in the homotopy produced by applying the Birkhoff curve shortening process to γ. Then $\gamma_{t} \subset \bar{\Omega}$.
"Curves cannot escape convex regions when shortened."

The Two-Ended Case

In this case, there always exists a pair of "short" geodesic loops that share a vertex but bound disjoint, cylindrical, convex regions.

The Two-Ended Case

First Idea

Shorten each loop individually.
Either both loops will escape to infinity or we get a short closed geodesics.

The Two-Ended Case

Second Idea

Shorten the loop pair as a single curve.
Either the curve will contract to a point or we get a short closed geodesic.

The Two-Ended Case

If we still haven't found a closed geodesic, then we have covered our entire surface with homotopies of curves.
Combine these three homotopies to make a sphere map f of non-zero degree.

The Two-Ended Case

Gromov's Idea: Pseudo-extension

Any attempt to continuously extend a map $f: S^{2} \rightarrow S^{2}$ of non-zero degree to some $\hat{f}: B^{2} \rightarrow S^{2}$ is doomed to fail, because S^{2} is not contractible.

If we try to construct \hat{f} very carefully, this failure can tell us something about f.

We will now try (in vain) to extend our map f.

Constructing the Pseudo-extension

Third Idea

Shorten the loop pair as a geodesic net, i.e. a graph with one vertex and two edges.

Critical fact: this loop pair will either contract to a point or converge to a figure-eight closed geodesic.

Constructing the Pseudo-extension

Supposing we don't get a geodesic, we make a (possibly zero-degree) sphere map for each loop pair in our net shortening homotopy, until our net becomes a point.

Constructing the Pseudo-extension

This creates an impossible continuous extension of f to the solid ball.

Therefore we must have encountered a short closed geodesic at some point.

Further Applications of Curve Shortening

Question

What is the optimal constant...

- ...for $I(M)$ in S^{2} ?
- ...for $I(M)$ in a non-compact surface (of finite area)?

Further Applications of Curve Shortening

Question

What is the optimal constant...

- ...for $I(M)$ in S^{2} ?
- ...for $I(M)$ in a non-compact surface (of finite area)?

Question

Can we simultaneously bound the lengths of the k shortest closed geodesics/geodesic loops on a surface?

Further Applications of Curve Shortening

Question

What is the optimal constant...

- ... for $I(M)$ in S^{2} ?
- ...for $I(M)$ in a non-compact surface (of finite area)?

Question

Can we simultaneously bound the lengths of the k shortest closed geodesics/geodesic loops on a surface?

Question

What about geodesics in higher dimensional manifolds? What about minimal hypersurfaces?

Conclusion

Thank you!

Section 1

References

[1] F. Balacheff. A local optimal diastolic inequality on the two-sphere. Journal of Topology and Analysis, 02(01): 109-121, 2010.
[2] V. Bangert. Closed geodesics on complete surfaces. Mathematische Annalen, 251(1):83-96, 1980.
[3] I. Beach and R. Rotman. The length of the shortest closed geodesic on a surface of finite area. Proceedings Of The American Mathematical Society, 2020.
[4] G. Birkhoff. Dynamical Systems. American Mathematical Society. American Mathematical Society, 1927. ISBN 9780821810095.
[5] E. Calabi and J. G. Cao. Simple closed geodesics on convex surfaces. Journal of Differential Geometry, 36(3):517-549, 1992.
[6] C. B. Croke. Area and the length of the shortest closed geodesic. J. Differential Geom., 27(1):1-21, 1988.
[7] A. Jabbour and S. Sabourau. Sharp upper bounds on the length of the shortest closed geodesic on complete punctured spheres of finite area. 2020. Preprint.
[8] Y. Liokumovich, A. Nabutovsky, and R. Rotman. Lengths of three simple periodic geodesics on a Riemannian 2-sphere. Mathematische Annalen, 367:831-855, 2017.
[9] A. Nabutovsky and R. Rotman. The length of the shortest closed geodesic on a 2-dimensional sphere. International Mathematics Research Notices, 2002(23):1211-1222, 2002.
[10] R. Rotman. The length of a shortest closed geodesic and the area of a 2-dimensional sphere. Proceedings of the American Mathematical Society, 134(10):3041-3047, 2006.
[11] S. Sabourau. Filling radius and short closed geodesics of the 2-sphere. Bulletin de la Société Mathématique de France, 132(1):105-136, 2004.
[12] S. Sabourau. Local extremality of the Calabi-Croke sphere for the length of the shortest closed geodesic. Journal of the London Mathematical Society, 82(3):549-562, 2010.
[13] G. Thorbergsson. Closed geodesics on non-compact Riemannian manifolds. Mathematische Zeitschrift, 159(3): 249-258, 1978.

