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Section 1

Geodesics
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Background: Geodesics

Definition
A geodesic is a curve that locally looks like a “straight line”.
Alternatively, a curve that is locally length minimizing.

Examples:

straight line segments in
Euclidean space

great circle arcs on the
sphere

this periodic curve on the
torus

Isabel Beach University of Toronto Geodesics and Curve Shortening November 7, 2022 3 / 55



Background: Geodesics

Definition
A geodesic that is also a closed curve is called a geodesic loop.

Definition
A geodesic loop that is smooth at its endpoints is called a
closed (or periodic) geodesic.
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Background: Existence

Question
Does a closed geodesic always exist on a given surface?

G. Birkhoff (1917) [4]

Every compact surface contains at least one closed geodesic.

G. Thorbergsson (1978) [16], V. Bangert (1980) [2]

Every complete surface of finite area contains at least one
closed geodesic.
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Background: Length Bounds

Question (M. Gromov)

What is the best bound for the length L of a shortest closed
geodesic on a Riemannian manifold M in terms of its geometric
properties (e.g., n

√
Vol, diameter, filling radius)?

We consider n = 2. When M is compact and not a 2-sphere,
answers in various cases were given by P. Pu, C. Loewner, M.
Gromov, J. Hebda, Y. Burago, V. Zalgaller, and others.
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Background: The Sphere

Question
Can we bound L if M is a sphere (with area A)?

C. B. Croke (1988) [7]

L ≤ 31
√
A

S. Sabourau (2004) [14], R. Rotman, A. Nabutovsky
(2002) [12]

L ≤ 8
√
A

R. Rotman (2006) [13]

L ≤ 4
√

2A

Isabel Beach University of Toronto Geodesics and Curve Shortening November 7, 2022 7 / 55



Background: The Sphere

Question
Can we bound L if M is a sphere (with area A)?

C. B. Croke (1988) [7]

L ≤ 31
√
A

S. Sabourau (2004) [14], R. Rotman, A. Nabutovsky
(2002) [12]

L ≤ 8
√
A

R. Rotman (2006) [13]

L ≤ 4
√

2A

Isabel Beach University of Toronto Geodesics and Curve Shortening November 7, 2022 7 / 55



Background: The Sphere

Question
Can we bound L if M is a sphere (with area A)?

C. B. Croke (1988) [7]

L ≤ 31
√
A

S. Sabourau (2004) [14], R. Rotman, A. Nabutovsky
(2002) [12]

L ≤ 8
√
A

R. Rotman (2006) [13]

L ≤ 4
√

2A

Isabel Beach University of Toronto Geodesics and Curve Shortening November 7, 2022 7 / 55



Background: The Sphere

Question
Can we bound L if M is a sphere (with area A)?

C. B. Croke (1988) [7]

L ≤ 31
√
A

S. Sabourau (2004) [14], R. Rotman, A. Nabutovsky
(2002) [12]

L ≤ 8
√
A

R. Rotman (2006) [13]

L ≤ 4
√

2A

Isabel Beach University of Toronto Geodesics and Curve Shortening November 7, 2022 7 / 55



Background: The Sphere

Question
What is the sharpest possible bound for L if M is a sphere?

Conjecture (E. Calabi, Croke, & Gromov) [5]

The sharp bound is L ≤ 121/4
√
A and is realized by the

Calabi-Croke sphere, obtained by gluing two equilateral triangles
along their boundary.

F. Balacheff (2010) [1], Sabourau (2010) [15]

This conjecture is true “locally”, i.e. for metrics close to the
Calabi-Croke sphere metric.
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Background: Non-Compact Surfaces

Question
Can we bound L if M is non-compact (with area A)?

Croke (1988) [7]

Suppose M is a complete, orientable surface with finite area A
and n ends. Let l(M) be the length of a shortest closed
geodesic on M .

1 If n = 1, then l(M) ≤ 31
√
A.

2 If n = 2, then l(M) ≤ (12 + 3
√

2)
√
A.

3 If n ≥ 3, then l(M) ≤ 2
√

2A.
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Non-Compact Surfaces

Question
What is the sharpest possible bound for L if M is non-compact
(with area A)?

B. & Rotman (2019) [3]

Suppose M is a complete, orientable surface with finite area A
and n ends. Let l(M) be the length of a shortest closed
geodesic on M .

1 If n ≤ 1, then l(M) ≤ 4
√

2A.

2 If n ≥ 2, then l(M) ≤ 2
√

2A.

This is a sharper constant for n = 1 and n = 2.
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Non-Compact Surfaces

Question
What is the sharpest possible bound for L if M is non-compact
(with area A)?

Conjecture (B. & Rotman (2019)) [3]

The sharp bound is L ≤ 121/4
√
A and is realized by the

Calabi-Croke sphere with “cusps” on its vertices.

Sabourau-Jabbour (2020) [10]
1 This conjecture is true for n = 3.

2 For n = 4, the sharp bound is L ≤ (2/31/4)
√
A and is

realized by a tetrahedron with “cusps” on its vertices.
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Question
What techniques can we use to analyze closed geodesics on a
surface?
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Section 2

Our First Tool: Curve Shortening

Algorithms
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The Birkhoff Curve Shortening Process

Idea
We can find short geodesics by shortening short closed curves.

The Birkhoff Curve Shortening Process
Given any closed curve γ on a compact manifold, we can
produce a homotopy γt such that

1 γ0 = γ

2 L(γt2) ≤ L(γt1) for all t1 < t2,

3 γt either escapes to infinity, shrinks to a point, or
converges on a closed geodesic.

Isabel Beach University of Toronto Geodesics and Curve Shortening November 7, 2022 14 / 55



The Birkhoff Curve Shortening Process

Idea
We can find short geodesics by shortening short closed curves.

The Birkhoff Curve Shortening Process
Given any closed curve γ on a compact manifold, we can
produce a homotopy γt such that

1 γ0 = γ

2 L(γt2) ≤ L(γt1) for all t1 < t2,

3 γt either escapes to infinity, shrinks to a point, or
converges on a closed geodesic.

Isabel Beach University of Toronto Geodesics and Curve Shortening November 7, 2022 14 / 55



The Birkhoff Curve Shortening Process

1 Consider an initial closed curve γ(t) parameterized by arc
length.

2 Pick N > L(γ)/ inj(M). Mark N points γ(ti) that are
equally spaced according to the parameter t.

3 Form a new curve by connecting γ(ti) to γ(ti+1) by the
corresponding unique minimizing geodesic segment.

4 Homotope γ to this new curve.

5 Repeat the above process, while ensuring that the new
chosen points γ(t ′i ) do not coincide with the previous
chosen points γ(ti).
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Example: BCSP in the Plane
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Using the BCSP

Maybe we could find a short curve and try to shorten it until we
obtain a short closed geodesic.

Problem 1
When I shorten a curve, it might collapse to a point (i.e., a
trivial closed geodesic).

Problem 2
When I shorten a curve, it might escape to infinity.

This is bad if every curve is either nullhomotopic or homotopic
to a point at infinity, i.e. if M is a sphere with punctures.
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Convexity

One way to control how curves shorten is to “trap” them in
convex regions.

Definition
A connected region Ω is called convex if there is some ε > 0
such that for all x , y ∈ Ω with d(x , y) < ε, the minimizing
geodesic segment between x and y lies within Ω.

Lemma
Let γ be a curve bounding a region Ω.

1 If γ is a geodesic, Ω is convex.

2 If γ is a geodesic loop and its inward-facing angle is less
than π, Ω is convex.
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Convexity

Lemma

Let Ω be a convex region. Let γ ⊂ Ω be a closed curve and let
γt be any curve in the homotopy produced by applying the
Birkhoff curve shortening process to γ. Then γt ⊂ Ω.

“Curves cannot escape convex regions when shortened.”
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Convexity

Non-compact surfaces with finite area have lots of geodesic
loops that we can exploit to control our curve shortening flow.

In fact, every infinite end is contained in a convex set bounded
by a “short” geodesic loop.

We will illustrate the case when M is a sphere with two ends
(M ' S1 × R).
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The Two-Ended Case

In this case, there always exists a pair of “short” geodesic loops
that share a vertex but bound disjoint, cylindrical, convex
regions.
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The Two-Ended Case

First Idea
Shorten each loop individually.

Either both loops will escape to infinity or we get a short closed
geodesics.
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The Two-Ended Case

Second Idea
Shorten the loop pair as a single curve.

Either the loop will contract to a point or we get a short closed
geodesic.
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The Two-Ended Case

If we still haven’t found a closed geodesic, then we have
covered our entire surface with homotopies of curves.
Combine these three homotopies to make a sphere map f of
non-zero degree.
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The Two-Ended Case

Gromov’s Idea: Pseudo-extension
Any attempt to continuously extend a map f : S2 → S2 of
non-zero degree to some f̂ : B2 → S2 is doomed to fail,
because S2 is not contractible.

We will now try (in vain) to extend our map f .
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Constructing the Pseudo-extension
Third Idea
Shorten the loop pair as a geodesic net, i.e. a graph with one
vertex and two edges.

Critical fact: this loop pair will either contract to a point or
converge to a figure-eight closed geodesic.
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Constructing the Pseudo-extension

Supposing we don’t get a geodesic, we make a (possibly
zero-degree) sphere map for each loop pair in our net
shortening homotopy, until our net becomes a point.
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Constructing the Pseudo-extension

This creates an impossible continuous extension of f to the
solid ball.

Therefore we must have encountered a short closed geodesic at
some point.
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Question
What other contexts can we apply these techniques to?
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Section 3

Finding Short Closed Geodesics in a

Degenerate Metric
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Hamiltonian Systems

Consider on Rn × Rn the Hamiltonian

H(p, q) =
1

2
pTA(q)p + V (q)

A : Rn → Rn × Rn

V : Rn → R

with corresponding Hamiltonian system

ṗ = −∂H
∂q

= −1

2
pT
∂A(q)

∂q
p − ∂V (q)

∂q

q̇ =
∂H

∂p
= A(q)p
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Hamiltonian Systems

Suppose instead our domain is a Riemannian manifold with
metric given by the matrix 1

2
A(q). Then our Hamiltonian

system is equivalent to the equation

D

dt
q̇ +∇V (q) = 0

(note that p is entirely determined by q)

Question
Are there periodic solutions to this equation? What do they
look like?
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Brake Orbits

Because the Hamiltonian is constant along solution curves,
there is a constant E so that

1

2
‖q̇‖2 + V (q) = E

This is the “energy” of the solution.

Therefore a solution q must lie within ΩE = V−1((−∞,E ]),
and q̇ = 0 only on the set V−1(E ).
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Brake Orbits

Definition
A brake orbit is a solution curve t 7→ (p(t), q(t)) with
p(0) = p(T ) = 0 for some T . Necessarily we have
q(0), q(T ) ∈ V−1(E ).
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Seifert’s Conjecture

If E is a regular value of V and V−1((−∞,E ]) is
homeomorphic to a disk Dn, then our system has n distinct
brake orbit solutions.

Question
How can we find brake orbits?

Isabel Beach University of Toronto Geodesics and Curve Shortening November 7, 2022 35 / 55



The Maupertuis Principle

The Maupertuis Principle

Solutions of our system in (M , g) with energy E correspond to
geodesics q(t) in the metric gE (x) = (E − V (x)))g(x).

Problem
It is difficult to use this principle to find brake orbits because
the metric gE is degenerate (zero) on V−1(E ).
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Orthogonal Geodesic Chords

One possible strategy: orthogonal geodesic chords.

Orthogonal Geodesic Chords

Pick “small” δ and consider the set Ωδ = V−1((−∞,E − δ])
with the metric gE . We call a geodesic segment γ an
orthogonal geodesic chord if

The endpoints of γ lie on ∂Ωδ.

γ is orthogonal to ∂Ωδ at its endpoints.

γ does not intersect ∂Ωδ except at its endpoints.
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Orthogonal Geodesic Chords

Giambó-Giannoni-Piccione 2022 [8]

In the metric gE , there is some ε > 0 such that for any
0 < δ < ε an orthogonal geodesic chord in Ωδ can be
uniquely extended to a break orbit in ΩE .

In the metric gE in n dimensions, there are n distinct
orthogonal geodesic chords.

Proof:

Use a specialized curve shortening flow.

Count the fixed points of the flow using
Lyusternik-Schnirelman theory.
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Question

Question
Can we apply our curve shortening techniques to find two brake
orbits of bounded length in a 2-disk ΩE?
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Problems

Problem
Geodesics that pass through ∂ΩE are not unique and do not
have to be locally-length minimizing.

Solution
There is still a number r > 0 such that any two points of
distance at most r can be connected by a unique minimizing
geodesic.
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Problems

Problem
If we want to obtain two distinct brake orbits, we will need to
ensure that when we shorten curves we do not obtain a pair of
the form {γ, γ2}.

Solution
Look for simple curves.
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Overview

1 Find two sweepouts of ΩE through curves based at
p = ∂ΩE of bounded length.

2 Modify these sweepouts to be through simple curves of
bounded length.

3 Apply a based-loop length-shortening process to these
sweepouts– without introducing self-intersections– to
obtain two simple geodesic loops based at p = ∂ΩE of
bounded length.

4 If these geodesic loops are distinct, we are done.
Otherwise, use Morse theory to find an entire critical-level
of geodesic loops.
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Constructing Sweepouts of a Sphere

Step one: find two sweepouts of ΩE through curves of known
length. For example, we could use the following.

Liokumovich-Nabutovsky-Rotman (2015) [11]

Given a 2-dimensional disk D and any point q ∈ ∂D, there is a
sweepout γt of D through loops based at q with γ0 = q,
γ1 = ∂D and

L(γt) ≤ 2L(∂D) + 664
√

area(D) + 2diam(D)

Our first sweepout will be the above, and the second will be
Γ(s, t) = γt ∗ γs .

Isabel Beach University of Toronto Geodesics and Curve Shortening November 7, 2022 43 / 55



Constructing Sweepouts of a Sphere

Step one: find two sweepouts of ΩE through curves of known
length. For example, we could use the following.

Liokumovich-Nabutovsky-Rotman (2015) [11]

Given a 2-dimensional disk D and any point q ∈ ∂D, there is a
sweepout γt of D through loops based at q with γ0 = q,
γ1 = ∂D and

L(γt) ≤ 2L(∂D) + 664
√

area(D) + 2diam(D)

Our first sweepout will be the above, and the second will be
Γ(s, t) = γt ∗ γs .

Isabel Beach University of Toronto Geodesics and Curve Shortening November 7, 2022 43 / 55



Constructing a Monotone Sweepout

Step two: modify these sweepouts to be through simple curves.

Chambers-Liokumovich (2014) [6]

Given a sweepout of a 2-sphere M through curves of length at
most L, it is possible to construct a sweepout of M through
simple curves of length at most L.
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Disk Flow

Step three: how do we shorten loops without introducing
intersections? Our starting point is the following process.

Hass-Scott (1994) [9]

Given any closed curve γ on a compact manifold, we can
produce a homotopy γt such that

1 γ0 = γ

2 L(γi+1) ≤ L(γi) for all i ∈ N,

3 A subsequence of the curves γi either shrinks to a point or
converges on a closed geodesic.

4 The number of self-intersections of γi does not
increase.
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Disk Flow

1 Cover the manifold with a finite collection of metric balls
{Bi}ni=1 of radius r < inj(M)/2. Ensure that γ is not
tangent to any ∂Bi .

2 Consider the curve obtained by replacing each segment of
γ ∩ B1 with the unique geodesic segment connecting its
endpoints. These segments will only intersect each other if
the original segments intersected each other.

3 Homotope γ to this new curve without introducing new
self-intersections.

4 Repeat this process with B2, . . . ,Bn.

5 Repeat the entire above process until convergence.
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Disk Flow
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Modified Disk Flow

First Modification
Ensure that B1 is centred on p = ∂ΩE . At each step in B1, we
will replace the arc that contains the basepoint γt(0) with two
minimizing rays emanating from γt(0).

This ensures that the basepoint remains fixed under the flow.
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Modified Disk Flow

Second Modification
It is possible for a minimizing geodesic to intersect the two
minimizing rays, even if the original curve was simple. When
such an intersection occurs, we apply the following homotopy.
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Modified Disk Flow

Proposition (B. (2022))

Given any closed, simple curve γ with basepoint ∂ΩE , we can
produce a homotopy γt of loops based at ∂ΩE such that

1 γ0 = γ

2 L(γi+1) ≤ L(γi) for all i ∈ N,

3 A subsequence of the curves γt either shrinks to a point or
converges on a (locally length-minimizing) closed
geodesic γ∞.

4 Each γt only intersects itself at p, and it only does
so non-transversely.

5 The loop γ∞ is prime (i.e., it is not given by
iterating another loop).
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Modified Disk Flow

Important Fact

The loop γ∞ is prime (i.e., it is not given by iterating another
loop).

1 If γ∞ was an iteration of a prime loop η, we must have
γ∞ = ηk for some k because γ∞ is locally-length
minimizing (i.e., we cannot have η ∗ −η as a subarc).

2 Because each only intersects itself non-transversely at p,
the only possibility is k = 1 and hence γ∞ = η is prime.
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Extending the Disk Flow to Sweepouts

For continuous families of curves, we cannot ensure that there
are no curve tangent to the boundary of a disk. If a tangency
occurs, we fill in the “gaps” with a homotopy.
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Pulling Tight

We finish by applying the curve shortening flow to our two
sweepouts. We cannot obtain an iterated loop, so either the
two loops have distinct images or they are equal.

If these geodesic loops are distinct, we are done. Otherwise, use
Morse theory to find an entire critical-level of geodesic loops.
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Result

Combining everything, we have:

Proposition (B. (2022))

The space (ΩE , gE ) has two distinct geodesic loops based at
p = ∂ΩE of bounded length, e.g., with

L ≤ 1328
√

area(ΩE ) + 4diam(ΩE )

Consequently, the associated Hamiltonian system on (M , g) has
two distinct brake orbits of energy E with bounded length.
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Section 4

References

Isabel Beach University of Toronto Geodesics and Curve Shortening November 7, 2022 55 / 55



[1] F. Balacheff. A local optimal diastolic inequality on the
two-sphere. Journal of Topology and Analysis, 02(01):
109–121, 2010.

[2] V. Bangert. Closed geodesics on complete surfaces.
Mathematische Annalen, 251(1):83–96, 1980.

[3] I. Beach and R. Rotman. The length of the shortest closed
geodesic on a surface of finite area. Proceedings Of The
American Mathematical Society, 2020. To appear.

[4] G. Birkhoff. Dynamical Systems. American Mathematical
Society. American Mathematical Society, 1927. ISBN
9780821810095.

[5] E. Calabi and J. G. Cao. Simple closed geodesics on
convex surfaces. Journal of Differential Geometry, 36(3):
517–549, 1992.

[6] G. R. Chambers and Y. Liokumovich. Optimal sweepouts
of a riemannian 2-sphere. 2014. doi:
10.48550/ARXIV.1411.6349. URL
https://arxiv.org/abs/1411.6349.

Isabel Beach University of Toronto Geodesics and Curve Shortening November 7, 2022 55 / 55

https://arxiv.org/abs/1411.6349


[7] C. B. Croke. Area and the length of the shortest closed
geodesic. J. Differential Geom., 27(1):1–21, 1988.
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