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Geodesics

Definition
A geodesic is a curve that locally looks like a “straight line”.

Alternatively, a curve that is locally length minimizing.

Examples:

straight line segments in
Euclidean space

great circle arcs on the
sphere

this periodic curve on the
torus
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Geodesics

Definition
A geodesic that is a closed curve is called a geodesic loop.

Definition
A geodesic loop that is smooth at its endpoints is called a
closed (or periodic) geodesic.
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Background: Existence

G. Birkhoff (1917)

Every compact surface contains at least one closed geodesic.

G. Thorbergsson (1978) [9], V. Bangert (1980) [1]

Every complete surface of finite area contains at least one
closed geodesic.
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Background: Length Bounds

Question (M. Gromov)

What is the best bound for the length L of a shortest closed
geodesic on a Riemannian manifold M in terms of its geometric
properties (e.g., n

√
Vol, diameter, filling radius)?

When M is compact surface except a 2-sphere, answers in
various cases were given by P. Pu, C. Loewner, M. Gromov, J.
Hebda, Y. Burago, V. Zalgaller, and many others.
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Background: The Sphere

What is the bound for L on a 2-sphere in terms of its area A?

C. B. Croke (1988) [2]

L ≤ 31
√
A

S. Sabourau (2004) [7], R. Rotman, A. Nabutovsky
(2002) [5]

L ≤ 8
√
A

R. Rotman (2006) [6]

L ≤ 4
√

2A
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Background: The Sphere

Conjecture (E. Calabi, Croke, & Gromov)

The sharp bound is L ≤ 121/4
√
A and is realized by the

Calabi-Croke sphere, obtained by gluing two equilateral triangles
along their boundary.

F. Balacheff (2010), Sabourau (2010) [8]

This conjecture is true “locally”, i.e. for metrics close to the
Calabi-Croke sphere metric.
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Background: Non-Compact Surfaces

Theorem (Croke, 1988) [2]

Suppose M is a complete, orientable surface with finite area A
and n ends. Let L be the length of a shortest closed geodesic
on M .

1 If n = 1, then L ≤ 31
√
A.

2 If n = 2, then L ≤ (12 + 3
√

2)
√
A.

3 If n ≥ 3, then L ≤ 2
√

2A.
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Main Result

Theorem (I.B. & R. Rotman 2020)

Suppose M is a complete, orientable surface with finite area A
and n ends. Let L be the length of a shortest closed geodesic
on M .

1 If n ≤ 1, then L ≤ 4
√

2A.

2 If n ≥ 2, then L ≤ 2
√

2A.

This is an improvement of Croke’s result if n = 1 or 2. We will
illustrate the (easier) case n = 2.
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Starting Point: Birkhoff’s Method

Let M be a sphere. Suppose we can construct a family of loops
starting and ending at a point curve that induces a non-zero
degree sphere map.

Then M has a geodesic with length bounded by the length of
the longest loop in our family.

Isabel Beach University of Toronto Geodesics and Curve Shortening 21 March 2021 10 / 24



Difficulty

One way to find (part of) such a family is to continuously
shorten a curve to a point.

However, if we try to do this on a punctured sphere, the curve
might escape to infinity.
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Pseudo-extension

Instead of directly applying Birkhoff’s method, we can use the
following technique.

Gromov’s Idea
Any attempt to continuously extend a map f : S2 → S2 of
non-zero degree to some f̂ : B2 → S2 is doomed to fail,
because S2 is not contractible.

If we try to construct f̂ in a smart way, this failure can tell us
some information.
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The Two-Ended Case

If M ' S1 × R, there always exists a pair of “short” geodesic
loops that share a vertex but bound disjoint cylindrical regions.

Assuming that our manifold has no short closed geodesics, we
will use this structure to construct f .
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Convex Sets

Lemma
Suppose a region Ω is bounded by geodesic loops. If each
geodesic loop has inward-facing angle at most π, then Ω is
“convex”.

Importantly, a curve cannot leave a convex set when being
shortened.
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The Two-Ended Case: Convexity

In fact, our two special loops bound disjoint convex regions.
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Constructing the Sphere Map

First Step
Shorten each loop individually.

Both loops will escape to infinity because there are no short
closed geodesics.
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Constructing the Sphere Map

Second Step
Shorten the loop pair as a single curve.
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Constructing the Sphere Map

Combine these three homotopies to make a sphere map f of
non-zero degree (by convexity & absence of geodesics).

We will now try to extend this map.
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Constructing the Pseudo-extension
Third Step
Shorten the loop pair as a geodesic net, i.e. a graph with one
vertex and two edges.
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Constructing the Pseudo-extension

We get a (possibly zero-degree) sphere map for each loop pair
in our net shortening homotopy, until our net becomes a point.
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Constructing the Pseudo-extension

This creates an impossible continuous extension of f to the
solid ball.

Our assumption that there are no short geodesics is false!
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Further Questions

Question 1
What is the optimal constant?

Conjecture (B.-Rotman):
If M is a sphere with n ≤ 3
punctures, 121/4

√
A is the sharp

bound and is realized by the
Calabi-Croke sphere with
“cusps” on its vertices.

This was recently proven to be true for n = 3 by A. Jabbour
and S. Sabourau [3].
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Further Questions

Question 2
Can we simultaneously bound the lengths of the first, second
and third shortest simple closed geodesics?
(cf. Lyusternik–Schnirelmann)

Y. Liokumovich, Nabutovsky and Rotman (2017) [4]:
Every Riemannian 2-sphere contains a simple closed geodesic of
length ≤ 5 diamM , a second one of length ≤ 10 diamM and a
third one of length ≤ 20 diamM .
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Further Questions

Question 3
What about higher dimensions?
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132(1):105–136, 2004.

[8] S. Sabourau. Local extremality of the Calabi–Croke sphere
for the length of the shortest closed geodesic. Journal of the
London Mathematical Society, 82(3):549–562, 2010.

[9] G. Thorbergsson. Closed geodesics on non-compact
Riemannian manifolds. Mathematische Zeitschrift, 159(3):
249–258, Oct 1978.

Isabel Beach University of Toronto Geodesics and Curve Shortening 21 March 2021 24 / 24


	References

