The Length of a Shortest Closed Geodesic

Isabel Beach University of Toronto

21 March 2021

Isabel Beach University of Toronto

Geodesics and Curve Shortening

21 March 2021 1/24

Geodesics

Definition

A geodesic is a curve that locally looks like a "straight line".

Alternatively, a curve that is locally length minimizing.

Examples:

- straight line segments in Euclidean space
- great circle arcs on the sphere
- this periodic curve on the torus

Geodesics

Definition

A geodesic that is a closed curve is called a geodesic loop.

Definition

A geodesic loop that is smooth at its endpoints is called a closed (or periodic) geodesic.

Background: Existence

G. Birkhoff (1917)

Every compact surface contains at least one closed geodesic.

- **→** ∃ →

Background: Existence

G. Birkhoff (1917)

Every compact surface contains at least one closed geodesic.

G. Thorbergsson (1978) [9], V. Bangert (1980) [1]

Every complete surface of finite area contains at least one closed geodesic.

Background: Length Bounds

Question (M. Gromov)

What is the best bound for the length L of a shortest closed geodesic on a Riemannian manifold M in terms of its geometric properties (e.g., $\sqrt[n]{Vol}$, diameter, filling radius)?

• • = • • = •

Background: Length Bounds

Question (M. Gromov)

What is the best bound for the length L of a shortest closed geodesic on a Riemannian manifold M in terms of its geometric properties (e.g., $\sqrt[n]{Vol}$, diameter, filling radius)?

When M is compact surface except a 2-sphere, answers in various cases were given by P. Pu, C. Loewner, M. Gromov, J. Hebda, Y. Burago, V. Zalgaller, and many others.

What is the bound for L on a 2-sphere in terms of its area A?

What is the bound for L on a 2-sphere in terms of its area A?

C. B. Croke (1988) [2] $L \le 31\sqrt{A}$

▶ < ∃ ▶</p>

What is the bound for L on a 2-sphere in terms of its area A?

C. B. Croke (1988) [2] $L \le 31\sqrt{A}$

S. Sabourau (2004) [7], R. Rotman, A. Nabutovsky (2002) [5] $L \le 8\sqrt{A}$

通 ト イ ヨ ト イ ヨ ト

What is the bound for L on a 2-sphere in terms of its area A?

- C. B. Croke (1988) [2] $L \le 31\sqrt{A}$
- S. Sabourau (2004) [7], R. Rotman, A. Nabutovsky (2002) [5] $L \le 8\sqrt{A}$

R. Rotman (2006) [6] $L \le 4\sqrt{2A}$

< □ > < □ > < □ > < □ > < □ > < □ >

Conjecture (E. Calabi, Croke, & Gromov)

The sharp bound is $L \leq 12^{1/4}\sqrt{A}$ and is realized by the Calabi-Croke sphere, obtained by gluing two equilateral triangles along their boundary.

• • = • • = •

Conjecture (E. Calabi, Croke, & Gromov)

The sharp bound is $L \le 12^{1/4}\sqrt{A}$ and is realized by the Calabi-Croke sphere, obtained by gluing two equilateral triangles along their boundary.

F. Balacheff (2010), Sabourau (2010) [8]

This conjecture is true "locally", i.e. for metrics close to the Calabi-Croke sphere metric.

• • = • • = •

Background: Non-Compact Surfaces

Theorem (Croke, 1988) [2]

Suppose M is a complete, orientable surface with finite area A and n ends. Let L be the length of a shortest closed geodesic on M.

• If
$$n = 1$$
, then $L \le 31\sqrt{A}$.

3 If
$$n=2$$
, then $L\leq (12+3\sqrt{2})\sqrt{A}$.

3 If
$$n \ge 3$$
, then $L \le 2\sqrt{2A}$.

► < ∃ ►</p>

Main Result

Theorem (I.B. & R. Rotman 2020)

Suppose M is a complete, orientable surface with finite area A and n ends. Let L be the length of a shortest closed geodesic on M.

• If
$$n \leq 1$$
, then $L \leq 4\sqrt{2A}$.

2 If
$$n \ge 2$$
, then $L \le 2\sqrt{2A}$.

This is an improvement of Croke's result if n = 1 or 2. We will illustrate the (easier) case n = 2.

Starting Point: Birkhoff's Method

Let M be a sphere. Suppose we can construct a family of loops starting and ending at a point curve that induces a non-zero degree sphere map.

Then M has a geodesic with length bounded by the length of the longest loop in our family.

Difficulty

One way to find (part of) such a family is to continuously shorten a curve to a point.

э

< □ > < 同 > < 回 > < 回 > < 回 >

Difficulty

One way to find (part of) such a family is to continuously shorten a curve to a point.

However, if we try to do this on a *punctured* sphere, the curve might escape to infinity.

Pseudo-extension

Instead of directly applying Birkhoff's method, we can use the following technique.

Instead of directly applying Birkhoff's method, we can use the following technique.

Gromov's Idea

Any attempt to continuously extend a map $f: S^2 \to S^2$ of non-zero degree to some $\hat{f}: B^2 \to S^2$ is doomed to fail, because S^2 is not contractible.

If we try to construct \hat{f} in a smart way, this failure can tell us some information.

The Two-Ended Case

If $M \simeq S^1 \times \mathbb{R}$, there always exists a pair of "short" geodesic loops that share a vertex but bound disjoint cylindrical regions.

Assuming that our manifold has no short closed geodesics, we will use this structure to construct f.

Convex Sets

Lemma

Suppose a region Ω is bounded by geodesic loops. If each geodesic loop has inward-facing angle at most π , then Ω is "convex".

Importantly, a curve cannot leave a convex set when being shortened.

• • = • • = •

The Two-Ended Case: Convexity

In fact, our two special loops bound disjoint convex regions.

Constructing the Sphere Map

First Step

Shorten each loop individually.

Both loops will escape to infinity because there are no short closed geodesics.

Constructing the Sphere Map

Second Step

Shorten the loop pair as a single curve.

- 4 ∃ ▶

Constructing the Sphere Map

Combine these three homotopies to make a sphere map f of non-zero degree (by convexity & absence of geodesics).

We will now try to extend this map.

Third Step

Shorten the loop pair as a *geodesic net*, i.e. a graph with one vertex and two edges.

We get a (possibly zero-degree) sphere map for each loop pair in our net shortening homotopy, until our net becomes a point.

This creates an impossible continuous extension of f to the solid ball.

This creates an impossible continuous extension of f to the solid ball.

Our assumption that there are no short geodesics is false!

Question 1 What is the optimal constant?

э

-

→ < Ξ →</p>

Question 1 What is the optimal constant?

Conjecture (B.-Rotman): If *M* is a sphere with $n \le 3$ punctures, $12^{1/4}\sqrt{A}$ is the sharp bound and is realized by the Calabi-Croke sphere with "cusps" on its vertices.

Question 1 What is the optimal constant?

Conjecture (B.-Rotman): If *M* is a sphere with $n \le 3$ punctures, $12^{1/4}\sqrt{A}$ is the sharp bound and is realized by the Calabi-Croke sphere with "cusps" on its vertices.

This was recently proven to be true for n = 3 by A. Jabbour and S. Sabourau [3].

Question 2

Can we simultaneously bound the lengths of the first, second and third shortest simple closed geodesics?

(cf. Lyusternik–Schnirelmann)

Question 2

Can we simultaneously bound the lengths of the first, second and third shortest simple closed geodesics? (cf. Lyusternik–Schnirelmann)

Y. Liokumovich, Nabutovsky and Rotman (2017) [4]: Every Riemannian 2-sphere contains a simple closed geodesic of length $\leq 5 \operatorname{diam} M$, a second one of length $\leq 10 \operatorname{diam} M$ and a third one of length $\leq 20 \operatorname{diam} M$.

Question 3 What about higher dimensions?

э

- V. Bangert. Closed geodesics on complete surfaces. Mathematische Annalen, 251(1):83–96, 1980.
- [2] C. B. Croke. Area and the length of the shortest closed geodesic. J. Differential Geom., 27(1):1–21, 1988.
- [3] A. Jabbour and S. Sabourau. Sharp upper bounds on the length of the shortest closed geodesic on complete punctured spheres of finite area. 2020. Preprint.
- Y. Liokumovich, A. Nabutovsky, and R. Rotman. Lengths of three simple periodic geodesics on a Riemannian 2-sphere. *Mathematische Annalen*, 367:831–855, 2017.
- [5] A. Nabutovsky and R. Rotman. The length of the shortest closed geodesic on a 2-dimensional sphere. *International Mathematics Research Notices*, 2002(23):1211–1222, 2002.
- [6] R. Rotman. The length of a shortest closed geodesic and the area of a 2-dimensional sphere. *Proceedings of the American Mathematical Society*, 134(10):3041–3047, 2006.

- [7] S. Sabourau. Filling radius and short closed geodesics of the 2-sphere. Bulletin de la Société Mathématique de France, 132(1):105–136, 2004.
- [8] S. Sabourau. Local extremality of the Calabi–Croke sphere for the length of the shortest closed geodesic. *Journal of the London Mathematical Society*, 82(3):549–562, 2010.
- [9] G. Thorbergsson. Closed geodesics on non-compact Riemannian manifolds. *Mathematische Zeitschrift*, 159(3): 249–258, Oct 1978.